3.123 \(\int \frac{x (a+b \sin ^{-1}(c x))}{(d-c^2 d x^2)^{3/2}} \, dx\)

Optimal. Leaf size=73 \[ \frac{a+b \sin ^{-1}(c x)}{c^2 d \sqrt{d-c^2 d x^2}}-\frac{b \sqrt{1-c^2 x^2} \tanh ^{-1}(c x)}{c^2 d \sqrt{d-c^2 d x^2}} \]

[Out]

(a + b*ArcSin[c*x])/(c^2*d*Sqrt[d - c^2*d*x^2]) - (b*Sqrt[1 - c^2*x^2]*ArcTanh[c*x])/(c^2*d*Sqrt[d - c^2*d*x^2
])

________________________________________________________________________________________

Rubi [A]  time = 0.0702272, antiderivative size = 73, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.08, Rules used = {4677, 206} \[ \frac{a+b \sin ^{-1}(c x)}{c^2 d \sqrt{d-c^2 d x^2}}-\frac{b \sqrt{1-c^2 x^2} \tanh ^{-1}(c x)}{c^2 d \sqrt{d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x*(a + b*ArcSin[c*x]))/(d - c^2*d*x^2)^(3/2),x]

[Out]

(a + b*ArcSin[c*x])/(c^2*d*Sqrt[d - c^2*d*x^2]) - (b*Sqrt[1 - c^2*x^2]*ArcTanh[c*x])/(c^2*d*Sqrt[d - c^2*d*x^2
])

Rule 4677

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)^
(p + 1)*(a + b*ArcSin[c*x])^n)/(2*e*(p + 1)), x] + Dist[(b*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*c*(p + 1
)*(1 - c^2*x^2)^FracPart[p]), Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b,
c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x \left (a+b \sin ^{-1}(c x)\right )}{\left (d-c^2 d x^2\right )^{3/2}} \, dx &=\frac{a+b \sin ^{-1}(c x)}{c^2 d \sqrt{d-c^2 d x^2}}-\frac{\left (b \sqrt{1-c^2 x^2}\right ) \int \frac{1}{1-c^2 x^2} \, dx}{c d \sqrt{d-c^2 d x^2}}\\ &=\frac{a+b \sin ^{-1}(c x)}{c^2 d \sqrt{d-c^2 d x^2}}-\frac{b \sqrt{1-c^2 x^2} \tanh ^{-1}(c x)}{c^2 d \sqrt{d-c^2 d x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0271635, size = 51, normalized size = 0.7 \[ \frac{a-b \sqrt{1-c^2 x^2} \tanh ^{-1}(c x)+b \sin ^{-1}(c x)}{c^2 d \sqrt{d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*(a + b*ArcSin[c*x]))/(d - c^2*d*x^2)^(3/2),x]

[Out]

(a + b*ArcSin[c*x] - b*Sqrt[1 - c^2*x^2]*ArcTanh[c*x])/(c^2*d*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

Maple [C]  time = 0.095, size = 194, normalized size = 2.7 \begin{align*}{\frac{a}{{c}^{2}d}{\frac{1}{\sqrt{-{c}^{2}d{x}^{2}+d}}}}-{\frac{b\arcsin \left ( cx \right ) }{{c}^{2}{d}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}+{\frac{b}{{c}^{2}{d}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}\ln \left ( icx+\sqrt{-{c}^{2}{x}^{2}+1}+i \right ) }-{\frac{b}{{c}^{2}{d}^{2} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}\ln \left ( icx+\sqrt{-{c}^{2}{x}^{2}+1}-i \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(3/2),x)

[Out]

a/c^2/d/(-c^2*d*x^2+d)^(1/2)-b*(-d*(c^2*x^2-1))^(1/2)/c^2/d^2/(c^2*x^2-1)*arcsin(c*x)+b*(-d*(c^2*x^2-1))^(1/2)
*(-c^2*x^2+1)^(1/2)/c^2/d^2/(c^2*x^2-1)*ln(I*c*x+(-c^2*x^2+1)^(1/2)+I)-b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(
1/2)/c^2/d^2/(c^2*x^2-1)*ln(I*c*x+(-c^2*x^2+1)^(1/2)-I)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\frac{1}{2} \,{\left (\sqrt{c x + 1} \sqrt{-c x + 1} c^{3} d^{2}{\left (\frac{2 \, x}{c^{2} d^{2}} - \frac{\log \left (c x + 1\right )}{c^{3} d^{2}} + \frac{\log \left (c x - 1\right )}{c^{3} d^{2}}\right )} + 2 \, \arctan \left (c x, \sqrt{c x + 1} \sqrt{-c x + 1}\right )\right )} b}{\sqrt{c x + 1} \sqrt{-c x + 1} c^{2} d^{\frac{3}{2}}} + \frac{a}{\sqrt{-c^{2} d x^{2} + d} c^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="maxima")

[Out]

(sqrt(c*x + 1)*sqrt(-c*x + 1)*c^3*d^2*integrate(x^2/(c^4*d^2*x^4 - c^2*d^2*x^2 + (c^2*d^2*x^2 - d^2)*e^(log(c*
x + 1) + log(-c*x + 1))), x) + arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)))*b/(sqrt(c*x + 1)*sqrt(-c*x + 1)*c^2
*d^(3/2)) + a/(sqrt(-c^2*d*x^2 + d)*c^2*d)

________________________________________________________________________________________

Fricas [A]  time = 2.11477, size = 595, normalized size = 8.15 \begin{align*} \left [\frac{{\left (b c^{2} x^{2} - b\right )} \sqrt{d} \log \left (-\frac{c^{6} d x^{6} + 5 \, c^{4} d x^{4} - 5 \, c^{2} d x^{2} + 4 \,{\left (c^{3} x^{3} + c x\right )} \sqrt{-c^{2} d x^{2} + d} \sqrt{-c^{2} x^{2} + 1} \sqrt{d} - d}{c^{6} x^{6} - 3 \, c^{4} x^{4} + 3 \, c^{2} x^{2} - 1}\right ) - 4 \, \sqrt{-c^{2} d x^{2} + d}{\left (b \arcsin \left (c x\right ) + a\right )}}{4 \,{\left (c^{4} d^{2} x^{2} - c^{2} d^{2}\right )}}, -\frac{{\left (b c^{2} x^{2} - b\right )} \sqrt{-d} \arctan \left (\frac{2 \, \sqrt{-c^{2} d x^{2} + d} \sqrt{-c^{2} x^{2} + 1} c \sqrt{-d} x}{c^{4} d x^{4} - d}\right ) + 2 \, \sqrt{-c^{2} d x^{2} + d}{\left (b \arcsin \left (c x\right ) + a\right )}}{2 \,{\left (c^{4} d^{2} x^{2} - c^{2} d^{2}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="fricas")

[Out]

[1/4*((b*c^2*x^2 - b)*sqrt(d)*log(-(c^6*d*x^6 + 5*c^4*d*x^4 - 5*c^2*d*x^2 + 4*(c^3*x^3 + c*x)*sqrt(-c^2*d*x^2
+ d)*sqrt(-c^2*x^2 + 1)*sqrt(d) - d)/(c^6*x^6 - 3*c^4*x^4 + 3*c^2*x^2 - 1)) - 4*sqrt(-c^2*d*x^2 + d)*(b*arcsin
(c*x) + a))/(c^4*d^2*x^2 - c^2*d^2), -1/2*((b*c^2*x^2 - b)*sqrt(-d)*arctan(2*sqrt(-c^2*d*x^2 + d)*sqrt(-c^2*x^
2 + 1)*c*sqrt(-d)*x/(c^4*d*x^4 - d)) + 2*sqrt(-c^2*d*x^2 + d)*(b*arcsin(c*x) + a))/(c^4*d^2*x^2 - c^2*d^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \left (a + b \operatorname{asin}{\left (c x \right )}\right )}{\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*asin(c*x))/(-c**2*d*x**2+d)**(3/2),x)

[Out]

Integral(x*(a + b*asin(c*x))/(-d*(c*x - 1)*(c*x + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \arcsin \left (c x\right ) + a\right )} x}{{\left (-c^{2} d x^{2} + d\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)*x/(-c^2*d*x^2 + d)^(3/2), x)